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correctness of the non-crystallographic symmetry 
operators. When these operations are incorrect, this 
phase identity results in calculated structure factors 
whose amplitudes are the mean of the amplitudes of 
observed structure factors related by the non-crystal- 
lographic symmetry. As a direct consequence, the R 
factor between observed and calculated acentric struc- 
ture factors will be significantly below 0.586, the value 
which is characteristic of incorrect structures lacking 
non-crystallographic symmetry. Still lower values for R 
are anticipated during phase refinement of incorrect 
structures with the correct non-crystallographic sym- 
metry, since the observed structure-factor amplitudes in 
this case will automatically satisfy (6) for obtaining the 
calculated magnitudes, irrespective of the associated 
phases. Neglect of the envelope in this treatment will 
modify the quantitative details somewhat, but model 
calculations presented here suggest this effect will be 
small for N > 3. Consequently, low R values during 
phase refinement by non-crystallographic symmetry 
averaging do not necessarily imply correctness of 
resulting structures. 

This work was supported by a USPHS Biomedical 
Research Support Grant to UCLA, and a Dreyfus 
Foundation Starter Grant in Chemistry. 
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Abstract 

The average value of the residual R 2 and its spread 
or(RE) is described as a function of a threshold a, below 
which E 2 values are omitted from the data set. 
Theoretical expressions, valid for finite data sets in the 
space groups P1 and P[,  are derived for ( R E )  and 
O'2(R2) as functions of a for models containing atoms 
correctly as well as incorrectly positioned. Use of a 
threshold causes a decrease in the resolving power of 
R2-based strategies used in automated structure evalua- 
tions. Random elimination of E o values gives rise to a 

0108-7673/83/060920-05501.50 

larger loss of resolving power than does the elimination 
of small E o values. 

1. Introduction 

Automation in X-ray single-crystal analysis requires 
criteria discriminating correct from incorrect models of 
the structure. The residual function R 2, defined as 

R2 = • (EZo - 172E~)Z/Y E4o (1.1) 
H H 

may be used as such a criterion. E o represents the 
observed and E c the calculated magnitude of the 
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normalized structure factors belonging to structure and 
model, respectively. The fraction of the scattering 
power of the n-atom model versus the N-atom structure 
is given by 

/,]2 2 2 -- r/c/r/o. (1.2) 

For point atoms with equal scattering power, r/~ -- n 
and r/2 = N. 

The usefulness of an RE-based criterion in a 
statistical decision procedure can be studied if at least 
the first two moments of the probability density 
function P(RE) are available. In previous papers of 
this series (Van Havere & Lenstra 1983a,b,c), we 
developed formulas valid for finite data sets in the space 
groups P1 and Pi ,  from which these moments can be 
calculated for various types of models, ranging from 
completely correct to totally incorrect including all 
in-between situations. One of the conclusions was that 
the iterative automated procedure which has the largest 
chance of success adds one new atom per cycle to a 
known partial model of the asymmetric unit. Intro- 
duction of incorrect atoms has a serious detrimental 
effect. Thus to prevent the acceptation of an incorrect 
atom the R E check has to be performed many times, 
which accumulates to a large fraction of the total 
computing time needed. An acceleration of the 
reliability check may be sought in a reduction of the 
total number of reflections involved in the computa- 
tions. For example, one may eliminate all reflections for 
which Eo z < a, or alternatively eliminate a similar 
number of randomly chosen reflections. In this paper 
we explore the consequences of these two alternatives 
with respect to R E-based reliability checks. 

The use of conditional probabilities allowed us to 
handle finite data sets and to arrive at realistic, 
theoretical estimates of o'(RE). In this aspect the 
analysis presented here differs from previous ones 
(Petit, Lenstra & Van Loock, 1981; Petit & Lenstra, 
1982). Now, the influence of the threshold a on (RE) as 
well as on o'(RE) is taken explicitly into account. This 
strengthens and enlarges considerably the conclusions 
drawn by Petit et al. 

2. General expressions for the moments of P(R2) 

It is necessary to recall some of the nomenclature and 
results developed earlier in this series. A tentative 
n-atom model in which ng atoms are correctly 
positioned and n: (ng + n: = n) atoms are badly 
misplaced is denoted by { g , f } .  The quantities to be 
investigated are (RE;~'o) and t72(R2;~o), that is the 
value of R E averaged over all models with fixed r/g and 
n: under the constraint of the set of observed E values 
(fro) and the spread of P(RE) under the same 
conditions. 

Expressions for these quantities are to be found in 
Van Havere & Lenstra (1983c) as equations (3.1) and 
(4.1) for (RE;geo) in the space groups P1 and Pi, 
respectively. Similarly, equations (3.2) and (4.2) give 
aE(RE;g'o) in P1 and P1, respectively. In a particular 
structure average and spread can thus easily be 
enumerated for all models {g , f } .  The impact of a 
threshold a simply follows from the elimination of all 
Eo 2 < a from the summations. 

If, however, we want to generalize the picture, that is 
without reference to a particular actual structure, we 
must construct an average structure. This is done by 
first replacing in equations (3.1), (3.2), (4.1), (4.2) of 
Van Havere & Lenstra (1983c) each te rm ~.n En by 
~ ( E o "  ). : ~  represents the number of reflections in the 
data set before the threshold is applied. Next, the 
threshold is introduced by replacing ~HE~,; E2o > a by 
~'a(Eon)a, where the subscript a refers to the 
threshold value. We now have to evaluate 

130 OO 

<En)a = f E~,P(Eo)dEo/ f P(Eo)dEo 
QI/2 al/2 

oo 

~e'~a = ~ .f P(Eo)dE o. (2.1) 
al/2 

2.1. Space  group P 1 

For structures in P1 containing large numbers of 
atoms, Wilson (1949) has derived 

P(Eo) = 2E o exp(-EoE). (2.1.1) 

Van Havere & Lenstra (1983a) showed that the 
asymptotical Wilson distribution is sufficiently accurate 
in most practical situations. Substitution of (2.1.1) in 
(2.1) gives 

(3O 

f Eo ~+1 exp(-- E 2) d E  o 
~21/2 

<Eo">a = (2.1.2)  

f E o exp(-- EEo) d E  o 
a,~2 

The denominator renormalizes the truncated E o 
distribution so that (E°o)a = 1. Realizing that (Magnus, 
Oberhettinger & Soni, 1966) 

(DO 

F(~,a) - f t ~-l exp(-  t) dt, (2.1.3) 
i1 

where F(~, a) is an incomplete gamma function, we can 
write 

F(lu/2 + 1,a) 
<E~o>a = (2.1.4) 

F(1, a) 

Since we need here only the even moments,/t = 2n (see 
however Appendix A for the odd moments), we use the 
identity 

r ( n  + 1,a) = n! exp(-  a) en(a ) (2.1.5) 
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n 
with e,,(a) = ~i:o d/i!,  a truncated exponential series 
(Magnus, Oberhettinger & Soni, 1966). Combination 
of (2.1.4) and (2.1.5) gives 

(E2o ") = n! G(a) 

(Eo2) = I + a 

( E  4) = 2 + 2a + a 2 

(Eo 6) = 6 + 6a + 3a 2 + a 3. (2.1.6) 

The results are the generalization of formulas given by 
Petit, Lenstra & Van Loock (1981). 

to 

( 2 n -  1)! 
<E2on)a=21-n 

(n--  1)I 

2-" exp(--a/2) 
+ 

n m erfc[ (a/2)ml 

~-. ( i -  1)! ( 2 n -  1)! i - m  
× 

~__, (n-l)!  (2i-1)! 

for n = 1,2,3, . . . .  (2.2.9) 

Equation (2.2.9) is a generalization of results by Petit, 
Lenstra & Van Loock (1981). 

2.2. Space group P i 

For structures in P[  containing large numbers of 
atoms, Wilson has derived 

P(Eo) -- (2/701/2 e x p ( -  E2o/2). (2.2.1) 

It was shown (Van Havere & Lenstra, 1983a) that this 
distribution is sufficiently accurate in most practical 
situations. We substitute (2.2.1) in (2.1), take t = EZo/2, 
use identity (2.1.3) and obtain 

F[(U + 1)/2, a/2l 
(E~o)a = 2 u/2 (2.2.2) 

F(1/2, a/2) 

For the even moments,/a = 2n (see Appendix B for the 
odd moments), we can use the recursion relation 
(Magnus, Oberhettinger & Soni, 1966) 

F(~,ct) = ( ~ -  1 ) F ( ~ -  1,ct) + ct t-I  exp( -a ) ,  (2.2.3) 

which allows us to prove that 

2n ( E o ) , , -  
2"F(n + ½) 

r(½) 

+ 
F(1/2,  a /2 )  ~ I '( i  + ½) 

(2.2.4) 

This equation can be simplified, using the identities 
(Magnus, Oberhettinger & Soni, 1966) 

F(I/2,a/2) = nVZerfc[(a/2) m] (2.2.5) 

F(n + ½) = 2 '-2" n v2 F(2n)/F(n) (2.2.6) 

r ( k  ) : 7T 1/2 ( 2 . 2 . 7 )  

F(n + 1) = n], (2.2.8) 

3. Discussion 

Substitution of (2.1.6) into (3.1), (3.2) (Van Havere & 
Lenstra, 1983c) or substitution of (2.2.9) into (4.1), 
(4.2) (Van Havere & Lenstra, 1983c) allows one to 
evaluate the impact of the elimination of intensities E ,  2 
_< a on the behaviour of (R2) and o'2(R2) without 
reference to a specific structure. Since the results for P1 
and P i differ only in a numerical way we restrict the 
discussion to P1 regarding the consequences on 
automated structure determination strategies. 

Figs. 1 and 2 show the behaviour of (R2) as a 
function of model size and threshold a for two extreme 
situations, viz completely correct models {g,0} and 
totally incorrect models {0, f  }. We show the extreme 
situations because a four-dimensional graph would be 
necessary to depict the behaviour of the general 
in-between models {g , f  }. 

From Figs. 1 and 2 it is clear that the variation due 
to a threshold a is smaller for {g,0} than for {0,f} with 
g = f This difference becomes understandable if one 
realizes that for correct models observed and calculated 
E values are correlated (i.e. small E o values are more 
likely to be associated with small E c values etc.). The 

<~> 
1 

a qq~ 

Fig. 1. Variation of (R2) as a function of model size and threshold 
a for models {g,0} in P1. 
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2 2 relative differences Eo 2 - r / E  c tend to be more evenly 
distributed over the data set and thus truncation of the 
set introduces only small changes in (RE). For 
incorrect models such a correlation does not exist 
resulting in the larger variation of (RE) with a. 

The path of tr(RE) as a function of model size and 
threshold for situations {g,0} and {0,f} is depicted in 
Figs. 3 and 4, respectively, showing similar character- 
istics in variation. The figures also reveal another 
not-self-evident phenomenon: an initial decrease in 
tr(RE) with increasing values of a. The position of the 

<RE> 

Fig. 2. Variation of (R2)  as a function of model size and threshold 
a for models {O,f } in P1. 

minimum in a(RE) for a particular model size depends 
on a. For correct models, the effect is very small (see 
Table 1), but becomes relatively large for incorrect 
models of large size. Unfortunately, however, the 
phenomenon cannot be used to increase the resolving 
power of RE-based criteria by manipulating the data set 
through the threshold a. As a measure of the resolving 
power we take the quantity S, defined as 

(RE{g, 1})--  (RE{g + 1, 0}) 
S -- (3.1) 

3[tY(RE{g, 1}) + tr(RE{g + 1, 0})] 

This definition of resolving power matches the 
automation strategy in which iteratively new atoms are 
added to the known partial model. This strategy was 
found (Van Havere & Lenstra, 1983c) to be the one 
with the largest chance of success. As can be seen from 
Fig. 5 the introduction of a threshold always decreases 
S, and thus the usefulness of an RE-based criterion. 

A truncation of the data set via the threshold a is a 
selective way of reducing the number of reflections. It 
seemed of interest to investigate the impact on S when 
the number of reflections is reduced by an aselective 
mechanism. One has, for instance, a random selection 
mechanism from point-atom structures if one imposes a 
8 limit on the data set, where 0 is the angle of 

a (RE),~F]-I 

I o 5581 11099 
O00 k 

2 
3. a 

Fig. 3. Variation of o'(RE) as a function of model size and threshold 
a for models {g,0} in PI .  

S 

20462593 a ~ 17 I O 536 

Fig. 5. Variation of resolving power S as a function of model size 
and threshold a in PI .  

olRE).¢%l 

~ 1292 

00 0 ~  

Fig. 4. Variation of tr(RE) as a function of model size and threshold 
a for models {0, f  } in PI.  

S 

1671 ~ i TI2 

Fig. 6. Variation of  S as a function of model size and number of 
reflections eliminated via the 0 limit. 
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Table 1. Minimum values o f  t72(R2)~"a as a function 
o f  threshold a and model size 

Models are of type {g,0} in space group PI .  For the sake of com- 
parison the values of a2(R2),-7~'a at a = 0 are given. ~'~ is the number 
of reflections in the data set. 

Model Minimum o2( R 2)-"~a 
N = 10 in 62(R2~a at a = at a = 0 

{ 0,0 } 0.00000 0.000 0.00000 
{ 1,0} 0.14968 0-080 0-14973 
{2,0} 0.29730 0.141 0.29772 
{3,0} 0.42235 0.187 0.42355 
{4,0} 0.51072 0-225 0-51286 
{5,0} 0.55267 0.256 0.55551 
{6,0} 0.54208 0.282 0.54510 
{ 7,0} 0.47654 0.306 0.47965 
{8,0} 0.35796 0-305 0-35943 
{9,0} 0.19382 0.270 0.19420 

{ 10,0 } 0- 00000 0.000 0.00000 

This can be written, using equation (2.2.3), as 

3 1 F(n + ~)F(~,a) 
= 

r(½)r(1,a)  

e-" ~ l  r (n  + 3) d-I~2 

+ r(1,a-----~ 2_,~=, r ( i  + ½) 

Using identities (2.1.5) and (2.2.5-2.2.8) we get 

<Eo2"+'>a = 2 -2(n+ v2) x I/2 e a erfc (a I/2) 

+ 2-2(n+ 1) 
(2n + 1)! 

n! 
n + l  

x~-~ 4 ~ 
i=l 

(2n + 1)! 

n! 

(A.2) 

(i - 1)l 
a i-l/2. (A.3) 

( 2 i -  1)! 

diffraction. Values for < R 2 )  and o' (R2)  under the 
condition of a 0 limit follow from the previous 
expressions by simply inserting the appropriate number 
of reflections ~'~ and putting a = 0. 

In order to compare the impact of a on S (S a) with 
the impact of the 0 limit (So) we eliminated the same 
number of reflections by both procedures. The results, 
presented in Figs. 5 and 6, respectively, clearly show 
that for all model sizes S a >_ S o . Thus, a random 
elimination of E o values gives rise to a larger loss of 
resolving power than does an elimination of the same 
number of small E o values. 
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APPENDIX A 

The odd moments for space group P1 are obtained by 
putting p = 2n + 1, n = 0, 1,2 . . . . .  in equation (2.1.4): 

F(n + ~,a) (E2n+i)a= (,4.1) 
r (1 , a )  

APPENDIX B 

The odd moments for space group P i  are obtained by 
putting p = 2n + 1, n = 1,2,..., in equation (2.2.2). 

(Eo2n+I)a = 2,+l/2F(n + 1, a/2) (B.1) 
F(1/Z,a/2) 

Using equations (2.1.5) and (2.2.5) we can write this as 

2 "+ l/2n! e -~/2 e,(a/2) 
(Eo2"+I)~ = (B.2) 

n '/2 erfc[ (a/2) '/2 ] 
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